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Abstract: Vehicle detection in satellite images is a challenging task due to the 
variability in scale and resolution, complex background, and variability in object 
appearance. One-stage detection models are currently state-of-the-art in object detection 
due to their faster detection times. However, these models have complex architectures 
that require powerful processing units to train while generating a large number of 
parameters and achieving slow detection speed on embedded devices. To solve these 
problems, this work proposes an enhanced lightweight object detection model based on 
the YOLOv4 Tiny model. The proposed model incorporates multiple modifications, 
including integrating a Mix-efficient layer aggregation network within its backbone 
network to optimize efficiency by reducing parameter generation. Additionally, an 
improved small efficient layer aggregation network is adopted in the modified path 
aggregation network to enhance feature extraction across various scales. Finally, the 
proposed model incorporates the Swish function and an extra YOLO head for detection. 
The experimental results evaluated on the VEDAI dataset demonstrated that the 
proposed model achieved a higher mean average precision value and generated the 
smallest model size compared to the other lightweight models. Moreover, the proposed 
model achieved real-time performance on the NVIDIA Jetson Nano. These findings 
demonstrate that the proposed model offers the best trade-offs in terms of detection 
accuracy, model size, and detection time, making it highly suitable for deployment on 
embedded devices with limited capacity. 
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1 Introduction 

N Recent Decades, There Have Been Significant 
Improvements in Remote Sensing Technology, 

leading to remarkable growth in the research field 
focused on ground object detection from satellites. 
Additionally, the rapid retrieval of information from 
ground stations [1], along with the increasing availability 
of publicly accessible vehicle data [2], has further 
advanced research in this field. Modern technological 
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advancements have played a significant role in fostering 
the growth of interest in Intelligent Transportation 
Systems (ITS). ITS integrates cutting-edge technologies 
into transportation systems to improve efficiency, safety, 
and sustainability. The study of traffic scenes and 
vehicle detection draws interest from researchers aiming 
to address numerous challenges, including identifying 
and counting vehicles [3], assessing vehicle speed [4], 
forecasting traffic patterns [5], and identifying traffic 
congestion [6]. These tasks are particularly complex 
because satellite images, which differ visually from 
natural images, present unique challenges. Specifically, 
vehicle detection in satellite images is hindered by 
resolution limitations, occlusion, environmental 
conditions, and cluttered backgrounds. Besides, 
variances in vehicle appearance, including size, shape, 
and color, pose challenges for creating a universal 
detection model. 
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The advancement of deep learning technology in 
machine vision applications has led to significant 
enhancements in deep convolutional neural networks 
(CNNs), notably elevating their effectiveness in object 
detection with respect to both accuracy and efficiency 
[7]. Deep learning facilitates the automatic extraction of 
multi-scale image features through self-learning from 
extensive datasets. Currently, two main approaches to 
object detection using deep learning techniques are 
candidate region-based and regression-based models. 
Candidate region-based models operate in two phases, 
with the initial phase generating an area of interest and 
the subsequent phase extracts features from each 
candidate box to accomplish bounding box 
determination and classification [8]. Despite achieving 
high accuracy in localizing and identifying objects, the 
candidate region-based model is limited by its slow 
processing speed, rendering it unsuitable for real-time 
use. Conversely, object detection is treated as a unified 
regression problem in the regression-based approach, 
handling region detection and classification 
simultaneously within the network [9]. You Only Look 
Once (YOLO) model is considered state-of-the-art in 
regression-based models due to its remarkable real-time 
performance of powerful GPU. However, the complex 
nature of the network requires longer training times, 
leading to the creation of a large-sized model that is 
unsuitable for implementation in embedded systems. 

Furthermore, detecting vehicles using satellites 
necessitates deploying an object detection model locally 
on embedded devices near the data source. This is done 
to achieve faster data processing and to avoid unreliable 
data exchange with a remote server, as well as security 
and privacy issues. However, these devices typically 
have limited hardware resources. As a result, it is 
essential to conduct a reasonable trade-off analysis 
between accuracy and efficiency. Therefore, a fast and 
lightweight detection model is required for accurate 
vehicle detection in satellite images. Currently, several 
modified YOLO-based models have been developed to 
improve the trade-off performance in object detection 
tasks in satellite images. Satellite images can capture a 
wide range of information across different spectral bands 
and sensor types. A comprehensive representation of the 
observed scene can be obtained by fusing data from 
multiple modalities. The multimodal fusion method was 
integrated into the YOLO network, enabling improved 
object detection performance by leveraging 
complementary information from various data sources 
[10]-[11]. However, combining multiple modalities 
requires extra computational resources, involving 
processing various data types and integrating them into 
the model. This can result in longer training and 
inference times, increasing the resource intensity of the 
system. Besides, a dilated convolution is integrated into 
the YOLO, which applies a filter over a larger input field 

without increasing the number of parameters or 
computation [12]. This module allows the YOLO model 
to capture features at multiple scales by adjusting the 
dilation rates, enabling the detection of vehicles of 
different sizes in low-resolution images. While the 
dilated convolution module enhances feature extraction 
and increases the receptive field, it also introduces 
challenges related to design complexity and 
computational overhead.  

Channel pruning is a popular technique for removing 
redundant and less significant channels, thus preserving 
the overall efficacy of the YOLO network. This 
approach effectively decreases the total number of 
parameters in the network [13]-[14]. However, at times, 
this method might remove essential features required for 
precise object detection, which can lead to a decline in 
performance. On the other hand, adding extra detection 
layers to the YOLO model can improve its ability to 
detect objects of various scales more effectively [13], 
[15]. Different layers can focus on different feature 
resolutions, enabling the identification of both small and 
large objects within the same image. However, it's 
important to note that incorporating more detection 
layers will increase the computational load, potentially 
slowing down the inference time. Furthermore, residual 
blocks (ResNets) have been incorporated into the 
backbone structure of YOLO, facilitating the training of 
deeper networks while reducing the number of 
parameters [16]. ResNets help address the issue of 
vanishing gradients and contribute to stability during the 
optimization process. However, these advantages come 
at the cost of increased computational demands, 
potentially impacting the model's efficiency. Moreover, 
MobileNet is known for its lightweight and efficient 
real-time object detection on resource-constrained 
devices. The network requires fewer parameters with 
less computational power and can achieve faster 
inference times. A MobileNetv3 replaced the original 
backbone of the YOLOv4 model to simultaneously 
reduce the parameter complexity [17]. Despite being 
lightweight, the network's compact design may limit its 
ability to capture all the necessary features, especially 
when dealing with complex datasets that are large-scale 
or highly diverse, which could lead to potential 
decreases in accuracy. Based on the related works, there 
is a lack of studies focused on enhancing the accuracy 
and efficiency of the YOLO model for detecting vehicles 
in satellite images. This is mainly due to the 
complexities involved in working with satellite images, 
which pose challenges in developing a highly accurate 
and efficient detection model. 

Based on the abovementioned shortcomings, an 
efficient YOLO model is proposed for detecting vehicles 
in satellite imagery. The Improved Tiny YOLO model 
aims to accurately detect multi-class vehicles in complex 
satellite images while maintaining an efficient and 
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lightweight structure for real-time performance on 
embedded devices. The proposed model includes three 
major improvements. First, a novel Mix-efficient layer 
aggregation network (MixELAN) module is integrated 
into the feature extraction network by combining the 
mixed-depthwise convolutions and efficient layer 
aggregation network to efficiently improve the model’s 
structure complexity. Next, a small, efficient layer 
aggregation network (SELAN) is fused into the modified 
path aggregation network (PANet) to promote a more 
comprehensive utilization of features from various levels 
of the network. Finally, the Swish activation function is 
utilized in every convolutional layer, and an extra 
detection layer is added to the prediction network to 
improve detection accuracy. 

The remainder of this article is structured as follows. 
Section 2 outlines the comprehensive methodology 
behind the Improved Tiny YOLO model developed for 
vehicle detection in satellite imagery, which also 
includes the dataset, performance evaluation, and 
experimental setup. Experimental results are analyzed 
and discussed in Section 3, and the conclusion of the 
study is presented in Section 4. 
 
2 Methodology 

The Improved Tiny YOLO model has been developed 
based on the modifications applied on the YOLOv4 Tiny 
model to enhance the accuracy of detecting small objects 
while maintaining its lightweight and fast performance 
for object detection in satellite images. This section 
provides an outline of the methodology used in this 
study. Firstly, Section 3.1 gives a brief overview of the 
VEDAI datasets used in the experiments. Then, Section 
3.2 discussed the proposed methodology in detail. 
Finally, Sections 3.3 and 3.4 describe the standard 
evaluation metric and experimental setup. 

2.1 Dataset 
This study utilized publicly available RGB satellite 

imagery datasets known as the VEDAI dataset [2]. The 
dataset consists of a wide variety of small vehicle types 
depicted in different environmental contexts, such as 
varied orientations and backgrounds, lighting conditions, 
and occlusions. In total, there are 1125 images in the 
training set and 125 images in the validation set. Each 
image measures 1024 × 1024 pixels and has a spatial 
resolution of 12.5 cm. Additionally, the dataset contains 
nine categories of vehicles, such as ‘truck,’ ‘boat,’ 
‘tractor,’ ‘plane,’ ‘car,’ ‘pickup,’ ‘van,’ ‘camping car,’ 
and ‘others.’ The 1250 images in the dataset are split 
into a 90% train set and a 10% test set.  

2.2 The proposed Improved Tiny YOLO model 
An optimized YOLO model based on the YOLOv4 

Tiny model is proposed to achieve an optimal balance 
between accuracy and efficiency.  The proposed model 

integrated several significant modifications in the 
backbone and neck section. The backbone network 
employs the novel MixELAN module to effectively 
improve the feature extraction and reduce the model's 
parameters. Then, the small efficient layer aggregation 
network (SELAN) is adopted in the modified PANet in 
the neck section. Finally, the Swish function and 
additional YOLO head detection are integrated into the 
proposed model. Figure 1 illustrates the proposed 
architecture of the Improved Tiny YOLO model.  

2.2.1 The backbone network 
The backbone architecture employs two 3×3 

Convolution-Batchnorm-Swish (CBS) blocks with stride 
2 and three MixELAN modules replacing the three CSP 
blocks from the YOLOv4 Tiny model to improve 
accuracy while reducing the number of parameters 
generated within the network. These modules are a 
fusion of the efficient layer aggregation network 
(ELAN) modules mixed with a depthwise convolution 
module (MixConv), representing a memory-efficient 
block. The ELAN module addressed the diminishing 
convergence observed in deep models as they scale. 
ELAN focuses on establishing an efficient network by 
managing the shortest and longest gradient paths in each 
layer. This approach enables deeper networks to achieve 
convergence more effectively [18]. The proposed model 
comprises of a simplified ELAN containing three 1×1 
CBS blocks with a stride of 1. The MixConv module 
substitutes single convolutional kernels with a mix of 
different sizes to improve accuracy and efficiency [19]. 
This is achieved by segmenting channels and applying 
various kernel sizes to each group. Larger kernels 
capture high-resolution patterns, whereas smaller kernels 
concentrate on low-resolution patterns, thus enhancing 
model accuracy and efficiency. This layer enhances the 
model's capability to extract features from inputs with 
high dimensions, thereby improving its expressive 
power. 

The proposed model adopted two different 
architectures of MixELAN modules with two different 
kernel sizes, namely MixELAN5 and MixELAN7 
modules. For the MixELAN5 module, the first two 
layers used a 1×1 CBS block with a 32 filter size. 
Subsequently, the second layer employed the MixConv 
layer using larger kernel sizes to effectively capture a 
wide range of patterns at different resolutions. The 
MixConv layer comprises two Depthwise convolution-
Batchnorm-Swish (DWCBS) blocks, using a mix of 
convolutional kernel sizes of 3×3 and 5×5 with 32 filter 
size and stride 1. Then, the feature maps generated from 
the four earlier blocks are concatenated to obtain feature 
maps of 128 size. Finally, a 1×1 CBS block of 64 filter 
size is performed. The second MixELAN5 block utilized 
the same structure with a different filter size of 64 for 
the first four layers and a filter size of 128 for the last  
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Fig. 1 Detailed architecture of Improved Tiny YOLO model. 

 

 
 

 
(a) (b) 

Fig. 2 Mix efficient layer aggregation network.  
 

Fig. 3 Small efficient layer aggregation network.  
 

layer. The detailed architecture for the first MixELAN5 
module for the first block is shown in Figure 2 (a). Next, 
the proposed module adopted MixELAN7 modules to 
further improve the model's ability to extract features 
from high-dimensional inputs. The module utilizes the 
same structure as the MixELAN5 but adds a 7×7 
DWCBS block with stride 1. The MixELAN7 block 
utilized a filter size of 128 for the first five layers and 

256 for the last layer. The detailed architecture of the 
MixELAN7 is depicted in Figure 2 (b). 

2.2.2 The neck network 
The proposed model adopted a simplified Path 

Aggregation Network (PANet) [20] in the neck network 
to improve the feature extraction and information flow. 
The PANet uses the bottom-up path, which helps to 
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better propagate lower-level features upwards, ensuring 
that fine-grained details are preserved and utilized in 
higher layers. This architecture aggregates features from 
different network layers, combining low-level and high-
level features to improve the model's ability to detect 
objects at various scales and improve the representation 
of the context around objects. The PANet also enhances 
the information flow, allowing the network to leverage 
more comprehensive feature representations, leading to 
better object detection performance. 

The first layer of the simplified PANet utilizes three 
small, efficient layer aggregation networks (SELAN) 
with two up-sample operations. The SELAN comprises 
two 1×1 CBS blocks and one 3×3 CBS block. The 
feature maps from these three blocks are concatenated 
and followed by 1×1 CBS blocks. The example 
architecture of the first SELAN is illustrated in Figure 3. 
The first SELAN is connected to the feature map with a 
filter of 256 from the backbone, producing feature maps 
of 16×16×256. The second and third SELANs undergo 
up-sample operation followed by a concatenation 
process from feature maps with the filters of 128 and 64 
from the backbone, which produced feature maps of 
16×16×128 and 32×32×64. The up-sample operation is 
used to double up the dimension of the feature maps. 
The second layer comprises two 1×1 CBS blocks and 
one SELAN. CBS block with a stride of 2 is used to 
reduce the feature map dimension in the second layer. 
Finally, the detection layers utilize the feature maps 
generated in the second layer.  

2.2.3 The detection network 
The object detection process takes place in the 

prediction network, using the last three feature maps 
from the neck network. Each network consists of a 3×3 
CBS layer with stride 1, a 1×1 convolution-linear layer, 
and a YOLO prediction layer. The CBS layer combines 
the feature maps from the previous layer, while the 
convolution-linear (CLin) layer generates the final 
prediction feature map. The YOLO output prediction 
layers generate a vector that includes the relevant class 
label, confidence score, and the predicted bounding 
box's coordinates. Each YOLO prediction layer 
calculates the loss separately, and these individual losses 
are combined and summed up for the backpropagation 
process.  

2.3 Performance evaluation 
Various performance metrics were employed to assess 

the effectiveness of the proposed model. These metrics 
include recall, precision, precision-recall curve, F1-
score, mean average precision (mAP), average IoU, and 
detection speed. Recall measures the likelihood of 
correctly identifying true objects, whereas precision 
evaluates the accuracy of predictions. The precision-
recall curve effectively demonstrates the balance 
between precision and recall. The definitions of recall 

and precision are provided in Equations 1 and 2, 
respectively. Furthermore, the F1-score in Equation 3 
merges precision and recall into a harmonic mean, with a 
score of 1 representing the highest accuracy. A true 
positive (TP) describes an object that has been correctly 
identified. Conversely, objects incorrectly identified are 
called false positives (FP), and those not identified are 
called false negatives (FN). The area beneath the 
precision-recall curve across different detection 
thresholds is measured by average precision (AP), and 
the mAP assesses the mean accuracy over various 
classes. The AP and mAP are computed by Eqs. 4 and 5, 
respectively. Moreover, the detection speed is measured 
based on the inference speed and the frame per second 
(FPS). Furthermore, the computational performance is 
determined through various criteria, including 
computation duration, model size, number of 
parameters, and floating point operations (FLOPs). The 
model's size reflects its storage requirements, which are 
determined by the number of trainable parameters in the 
network. Additionally, FLOPs are used to measure the 
computational complexity of the model. 
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2.4 Experiment setup 
The experiments were conducted using a Windows 10 

64-bit OS equipped with an Intel Core i5-9300H @ 2.4G 
Hz CPU, NVIDIA GeForce GTX 1650 Ti, 8 GB of 
RAM, and a graphic card with 4 GB of VRAM. The 
Darknet framework was applied to train the YOLO-
based models. The real-time performance was assessed 
using an NVIDIA Jetson Nano 4GB embedded device. 
Standardized hyperparameters were applied across all 
YOLO-based models to maintain uniformity in the 
experimental results. The input images were resized to 
512×512 pixels, and a batch size of 64, with a 
subdivision of 32, was selected. Evaluation metrics were 
determined using a standard IoU threshold of 0.5. The 
initial learning rate was set at 0.001, with adjustments to 
0.0001 and 0.00001 after achieving 80% and 90% of the 
training steps. Furthermore, adjustments were made to 
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the decay weight and momentum at 0.0005 and 0.9. The 
training process spanned over 30,000 steps. 

 
3 Results and Discussions 

This section evaluates the performance of the 
Improved Tiny YOLO model, focusing on its detection 
performance and computational efficiency. The model is 
benchmarked against several lightweight YOLO models 
as well as studies conducted in the past. 

3.1 Comparison of detection performance 
Table 1 provides a comparative assessment of the 

detection efficiency of the proposed Improved Tiny and 
several other detection models. The results demonstrate 
that the Improved Tiny YOLO model outperforms the 
other tiny models, achieving a mAP of 50.41%, notably 
higher than the mAPs obtained by YOLOv7 Tiny 
(47.84%), YOLOv4 Tiny (47.25%), and YOLOv3-tiny 
(37.63), %respectively. Additionally, the Improved Tiny 
model exhibits a significant mAP improvement of 6.69% 
over the baseline YOLOv4 Tiny model. Despite the 
YOLOv7 Tiny model featuring a more complex 
architectural depth, it achieves a slightly lower mAP 
than the proposed model. The simpler designs of 
YOLOv3 Tiny and YOLOv4 Tiny models are associated 
with their lower recall values, primarily due to 
difficulties in detecting smaller objects. In terms of 
average IoU, the proposed model obtained a higher 
value compared to the YOLOv7 Tiny and YOLOv3 Tiny 
models by 46.92%. While the value is slightly lower 
than the YOLOv4 Tiny model, it is considered a good 
overlap percentage between ground truth and predicted 
bounding boxes, especially considering it exhibited a 
higher overall mAP value. The proposed model achieved 
a higher precision value than the YOLOv7 Tiny and 
YOLOv3 Tiny models but slightly lower than the 
original YOLOv4 Tiny model at 0.6. However, the recall 
value of the proposed model is significantly increased by 
0.2 compared to the YOLOv4 Tiny model, resulting in 
an F1-score of 0.59, which is the highest among the 
other tiny models. These results show that the Improved 
Tiny YOLO model excels in detecting more vehicles, 
especially in the case of smaller objects. The comparison 
of the precision-recall curve between the lightweight 
models is depicted in Figure 4. It can be noticed that the 
curve for Improved Tiny YOLO is shifted slightly better, 
leading to a marginally larger area under the curve and 
corresponding to a higher mAP value. 

These results show that the proposed modifications 
have significantly improved the ability of the Improved 
Tiny YOLO models to detect small objects, especially 
vehicles, in satellite images. Firstly, integrating 
MixConv and ELAN modules in the backbone network 
leverages the strengths of both approaches to create an 
efficient network architecture, enhancing multi-scale 
feature representation, optimizing computational 

efficiency, and improving detection accuracy. The 
ELAN module effectively merges features from various 
layers within the network, enabling the capture of low-
level and high-level information for more precise 
predictions. This combination of features allows the 
model to utilize information from various stages of the 
network, hence improving its capability to identify 
objects of different sizes, shapes, and appearances. 
Besides, the MixConv module relies on its mixed-
depthwise convolutions and channel-mixing operations 
to improve efficiency and performance by enhancing 
feature interactions across different channels. These 
operations enable the model to capture richer and more 
diverse feature representations by mixing information 
from different channels. This design allows the model to 
efficiently capture features at multiple scales, leading to 
improved feature representation learning.  

Secondly, the neck section, composed of a modified 
PANet, enhances detection performance by improving 
feature fusion and information flow. This network 
leverages a bottom-up pathway to reduce the distance of 
information transfer between lower and higher layers, 
thereby retaining more spatial details from the initial 
layers. The integration of the modified ELAN module 
helps to combine features across various layers, which 
enables the model to capture more complex details and 
contexts from various input images. Finally, the 
proposed model incorporates three YOLO head layers 
for object detection. This enables the model to capture 
fine details and features at various scales, allowing it to 
detect objects of different sizes more effectively. 
Moreover, additional detection layers improve the 
feature representation by combining information from 
different stages of the network, leading to richer and 
more discriminative features. 
A comprehensive analysis compares the proposed model 
to several established past studies to assess its 
effectiveness, as detailed in Table 1. It is evident that 
both YOLO-S [16] and Modified YOLO-PmA [21] 
demonstrated inferior mAP in comparison to the 
Improved Tiny YOLO model. Notably, YOLO-S utilizes 
feature fusion and a pass-through module in its 
architecture, whereas modified YOLO-PmA is 
distinguished by its novel hypermetropic architecture. In 
the case of YOLO-S, the categorization approach 
involved merging cars and pickups into one class and 
similarly merging camping cars with vans into a single 
van class, which resulted in an mAP of 43.60%. 
Conversely, the YOLO-PmA analysis considered all 
categories individually and achieved an mAP of 37.91%. 
Compared to the Improved Tiny YOLO model, YOLO-
Fine [13], SuperYOLO [10], and YOLOrs [11] have 
shown superior accuracy levels, achieving 68.18%, 
72.49%, and 57.00%, respectively. YOLO-Fine 
enhances the YOLOv3 model through channel pruning 
to reduce the number of network parameters. In contrast, 
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SuperYOLO leverages multimodal data fusion with 
super-resolution learning for improved detection across 
various scales at high resolution, while YOLOrs 
integrates ResNet's modular residual blocks with 
YOLOv3's multi-head detection approach. Their notably 
high mAP can be attributed to the models not evaluating 

all nine classes. Specifically, YOLO-Fine evaluates only 
seven classes, combining the plane class with others, 
whereas both SuperYOLO and YOLOrs omit any class 
with fewer than 50 instances, such as motorcycles, 
planes, and buses.  

 

Table 1 Comparison of detection performance. 
Model Input size Precision Recall F1-score Average IoU 

(%) 
mAP (%) 

YOLO-S [16]  416 0.78 0.69 0.73 - 43.60 
Modified YOLO-PmA [21]  416 - - - - 37.91 
YOLO-Fine [13]  512 0.67 0.70 0.69 - 68.18 
SuperYOLO [10]  512 - - - - 72.49 
YOLOrs [11]  512 0.47 0.74 - - 57.00 
YOLOv3 Tiny  512 0.51 0.50 0.51 36.52 37.63 
YOLOv4 Tiny 512 0.69 0.39 0.50 54.87 47.25 
YOLOv7 Tiny 512 0.55 0.59 0.57 43.86 47.84 
Improved Tiny YOLO 512 0.60 0.59 0.59 46.92 50.41 

 
Table 2 Comparison of individual class performance. 

Model  Truck 
(%) 

Car (%) Van (%) Pickup 
(%) 

Tractor 
(%) 

Plane 
(%) 

Camping 
car (%) 

Boat 
(%) 

Other 
(%) 

mAP 
(%) 

YOLO-S [16]  32.60 80.60 44.50 - 27.30 74.20 - 25.90 19.90 43.60 
Modified YOLO-PmA 
[21] 

 - - - - - - - - - 37.91 

YOLO-Fine [13]  63.45 76.77 77.91 74.35 78.12 - 64.74 70.04 45.04 68.18 
SuperYOLO [10]  68.55 90.30 70.30 53.86 79.48 - 76.69 58.08 53.86 72.49 
YOLOrs [11]  50.65 85.25 38.92 72.93 76.77 - 70.31 18.65 42.67 57.00 
YOLOv3 Tiny  21.45 62.94 48.17 59.27 49.93 8.33 32.12 38.54 17.93 37.63 
YOLOv4 Tiny  60.70 39.32 16.68 50.10 34.07 62.68 71.48 54.84 19.68 47.25 
YOLOv7 Tiny  18.83 82.25 77.59 67.09 41.92 16.66 77.64 37.71 10.85 47.84 
Improved Tiny YOLO  25.29 81.91 56.23 66.79 64.92 46.50 56.23 34.35 21.60 50.41 

 

 
Fig. 4 Comparison of precision-recall curve.  

 

Table 2 compares the detection accuracy per class for 
several object detection models. It can be observed that 
the Improved Tiny YOLO model showcased superior 
performance by achieving the highest AP in two distinct 
classes, ‘tractor’ and ‘other,’ with 64.92% and 21.60%. 
On the contrary, the YOLOv7 Tiny excelled in 

recognizing ‘car,’ ‘camping car,’ ‘van,’ and ‘pickup,’ 
while the YOLOv4 Tiny outperformed in detecting 
‘track,’ ‘plane,’ and ‘boat.’ Importantly, the proposed 
model demonstrated a remarkable consistency in AP 
across all considered classes, resulting in a slightly 
higher mAP when compared to other tiny models. This 
underlines its effectiveness in distinguishing diverse 
objects with diverse features. Despite obtaining the 
highest AP for four out of nine classes, the YOLOv7 
Tiny model recorded the least AP for the ‘other’ and 
‘truck’ classes when compared to other tiny models. 
This led to a marginally reduced overall mAP compared 
to the proposed model.  

A qualitative analysis was performed on three different 
images comprised of vehicles in diverse backgrounds, 
including (a) varying size, (b) occlusion, and (c) 
complex background. Figure 5 depicts the comparison of 
visual detection across various lightweight YOLO 
models. The proposed model and YOLOv7 Tiny model 
can successfully detect vehicles of different sizes, with 
only one false positive, as shown in Figure 5 (a). In 
contrast, YOLOv4 Tiny struggles to detect large 
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vehicles, while YOLOv3 Tiny misses some detections. 
In the case of occlusion, both Improved Tiny YOLO and 
YOLOv7 Tiny models were able to detect most of the 
occluded vehicles, while there were some false negatives 
obtained from the YOLOv4 Tiny and YOLOv3 Tiny, as 
shown in Figure 5 (b). Finally, the Improved Tiny 
YOLO model showcased its capability by accurately 

detecting all vehicles, even in the challenging 
environments of housing areas characterized by a variety 
of shapes and features. While the YOLOv4 tiny model 
recognized a cabin as a camping car, both the YOLOv4 
Tiny and YOLOv3 Tiny experienced some inaccuracies, 
with certain vehicles being misidentified. These 
outcomes are visually demonstrated in Figure 5(c).    

Improved Tiny YOLO YOLOv7 Tiny YOLOv4 Tiny YOLOv3 Tiny 

    
(a) 

    
(b) 

    
(c) 

Fig. 5 Comparison of visual detection on test images. (a) Varying sizes (b) Occlusion (c) Complex background. 
 

Table 3 Comparative analysis of computational performance and detection time. 

Model Layers Training 
time (h) 

Trainable 
parameter 
(Million) 

Model size 
(MB) 

Inference time (ms) Frame per second (FPS) 

GeForce GTX 
1650 

Jetson 
nano 

GeForce GTX 
1650 

Jetson 
nano 

YOLOv3 Tiny 23 17.76 8.25 33.0 5.71 1593.30 63.4 17.3 

YOLOv4 Tiny 37 18.34 5.63 22.5 5.90 1630.45 63.3 16.6 

YOLOv7 Tiny 98 26.89 5.78 23.1 7.44 1715.78 63.5 14.3 

Improved Tiny 
YOLO 

78 24.24 3.05 12.2 6.95 1692.22 63.4 15.1 
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The test images demonstrate the capabilities of the 
proposed model, achieving improved detection accuracy 
in a range of image conditions. 

3.2 Comparison of speed and computational 
performance 

Table 3 provides a detailed comparison focusing on 
detection speed and computational performance. The 
findings show that the proposed model operates at a 
slightly higher training time compared to YOLOv7 Tiny 
but slower than the speed of both YOLOv4 Tiny and 
YOLOv3 Tiny models. This is mainly attributed to the 
complexity of the architecture, which corresponds to the 
number of layers. Deeper architectural designs 
necessitate longer computation times because they 
process each image through a more extensive series of 
operations. Besides, the Improve YOLO model has 
achieved an impressive reduction in size, resulting in a 
remarkably tiny model size of only 12.2 MB. This 
represents a significant decrease of 47.2%, 45.8%, and 
63.0% compared to the YOLOv7 Tiny, YOLOv4 Tiny, 
and YOLOv3 Tiny models, respectively. This size 
reduction was made possible by implementing various 
modifications that have substantially reduced the total 
number of trainable parameters in the network. The 
ELAN structure used in the backbone and neck network 
helps to minimize the computational overhead related to 
feature aggregation. This module efficiently combines 
features from different scales, which helps in reducing 
redundant computations. In addition, MixConv presents 
a flexible approach to depthwise convolution, adapting 
the sizes of the convolution kernels in response to the 
dimensions of the feature maps. This method effectively 
minimizes computational demands while maintaining 
the performance of the model. 

The models were evaluated on NVIDIA Jetson Nano 
and GeForce GTX 1650 in order to analyze their real-
time performance. The Improved Tiny model showed a 
marginal improvement in inference time compared to 
YOLOv7 Tiny but slower than the other tiny models on 
both hardware. Additionally, the proposed model 
reached a frame rate of 63.4 FPS on the GeForce GTX 
1650, which is on par with other tiny models. On the 
Jetson Nano, the model recorded an FPS of 15.1, which 
is marginally slower than that achieved by the YOLOv3 
Tiny and YOLOv4 Tiny models, yet it outperforms the 
YOLOv7 Tiny model. This indicates that the proposed 
model can operate at near real-time speeds on embedded 
devices. 

The distribution of FLOPs values for an input size of 
512×512 is compared to analyze the computational 
complexity across different network sections as detailed 
in Figure 6. Notably, the Improved Tiny YOLO model 
demonstrated the lowest FLOPs value among the 
lightweight models, with 5.917 FLOPs. This represents a 
42.6% reduction compared to the original YOLOv4 Tiny 
model. This illustrates that the proposed model is less 

complex than the YOLOv4 Tiny model. In the backbone 
network, the proposed model achieved a FLOPs value of 
1.917, which is the smallest compared to the other 
models. This value is approximately 3.9 times smaller 
than the conventional YOLOv4-tiny model and about 
half the size of the YOLOv3 Tiny and YOLOv7 Tiny 
models. This demonstrates the effectiveness of 
integrating MixELAN modules into the backbone 
network. These modules not only improve the accuracy 
of the proposed model but also decrease the parameters 
generated within the network. 

The inclusion of the modified PANet in the neck 
section has increased the FLOPs value by 0.447 FLOPs 
compared to the YOLOv4 tiny model. This increase 
results from the modified PANet, which consists of two 
layers with four SELAN modules aimed at providing a 
richer and more detailed feature representation through 
feature propagation within the network. Additionally, the 
integration of SELAN blocks helps to reduce 
computational complexity further. SELAN helps 
streamline the processing pipeline and reduce redundant 
computations by efficiently aggregating features at 
different scales. The YOLOv4 Tiny model employed 
only two Convolution-Batchnorm-Leaky (CBL) blocks, 
leading to a very low FLOPs value. On the other hand, 
the FLOPs value is slightly higher than the YOLOv3-
tiny model but lower than the YOLOv7 Tiny model. The 
YOLOv3 Tiny model incorporated only two CBL blocks 
in the neck network, while the YOLOv7 Tiny model 
utilized a complex PANet architecture comprising 
multiple CBL and ELAN blocks. The FLOPs value in 
the prediction network is the highest compared to other 
lightweight models because of the additional prediction 
layer. Besides, the modified PANet structure in the neck 
section has extracted three feature maps of three 
different sizes, which slightly increases the FLOPs value 
in the network. 

 

 
                  Fig. 6 FLOPs distribution throughout the network. 
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3.3 Future works and applications 
In the future, it would be beneficial to incorporate 

satellite imagery with additional multimodal data fusion 
such as synthetic aperture radar data, infrared imagery, 
or LiDAR data. This integration could improve detection 
accuracy, especially in challenging conditions such as 
poor lighting. Additionally, the proposed model can be 
further enhanced by implementing attention 
mechanisms, which would allow the model to 
concentrate on relevant parts of the image. Lastly, the 
proposed model can be optimized for deployment on 
edge devices, enabling real-time processing of satellite 
images directly on-board satellites or UAVs. The 
developed model proposed in this paper is beneficial for 
numerous real-time applications, such as traffic 
monitoring and management. It can help optimize traffic 
flow and reduce congestion in urban areas. Additionally, 
it can be utilized for security and surveillance, such as 
monitoring unauthorized vehicle movements in 
restricted areas. Furthermore, the model can be deployed 
for rapidly assessing vehicle movement and density in 
disaster-stricken areas, helping to efficiently allocate 
rescue and relief efforts. 
 
4 Conclusion 

This study proposed an enhanced YOLO-based 
detection model, called Improved Tiny YOLO, to detect 
multi-class vehicles in satellite images. Several 
modifications were integrated into the original YOLOv4 
Tiny model in order to improve the accuracy and 
efficiency of the proposed model. First, three MixELAN 
modules were employed to replace the original CSP 
blocks to improve accuracy while reducing the number 
of parameters generated within the network. Then, the 
PANet was restructured using SELAN to promote more 
comprehensive utilization of features from various levels 
of the network. Finally, an additional detection layer is 
added to the prediction network, and the Swish 
activation function is utilized, replacing the Leaky ReLu 
function to further enhance the detection performance. 
The proposed model has shown significant improvement 
in terms of accuracy, achieving an mAP of 50.41% with 
an increment of 6.69% from the baseline model of the 
YOLOv4 Tiny model. Besides, the proposed model is 
significantly less complex than the other tiny models, 
with a BFLOP value of 5.917, indicating lower 
computational requirement for the training process. 
Moreover, the proposed model obtained a remarkably 
small size of 12.2MB and achieved near real-time speed 
on Jetson Nano. Based on these advantages, the 
proposed model is well-suited for real-time vehicle 
detection on satellite images using embedded devices. 
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